top of page

CB[n]-peptide interactions



Peptide dimerization is ubiquitous in natural protein conjugates and artificial self-assemblies. A major challenge in artificial systems remains achieving quantitative peptide heterodimerization, critical for next-generation biomolecular purification and formulation of therapeutics. Here, we employ a synthetic host to simultaneously encapsulate an aromatic and a noncanonical l-perfluorophenylalanine-containing peptide through embedded polar−π interactions, constructing an unprecedented series of heteropeptide dimers. To demonstrate the utility, this heteropeptide dimerization strategy was applied toward on-resin recognition of N-terminal aromatic residues in peptides as well as insulin, both exhibiting high recycling efficiency (>95%). This research unveils a generic approach to exploit quantitative heteropeptide dimers for the design of supramolecular (bio)systems.

Supramolecular dimerisation of middle-chain Phe pentapeptides via CB[8] host–guest homoternary complex formation


Pentapeptides containing a Phe residue in the middle of the sequence exhibit ternary complex formation in the presence of cucurbit[8]uril, thus opening new perspectives on supramolecular peptide dimerisation studies.


Aryl-viologen pentapeptide self-assembled conductive nanofibers

A pentapeptide sequence was functionalized with an asymmetric arylated methyl-viologen (AVI3D2) and through controllable β-sheet self-assembly, conductive nanofibers were formed. Using a combination of spectroscopic techniques and conductive atomic force microscopy, we investigated the molecular conformation of the resultant AVI3D2 fibers and how their conductivity is affected by β-sheet self-assembly. These conductive nanofibers have potential for future exploration as molecular wires in optoelectronic applications.

On-Resin Recognition of Aromatic Oligopeptides and Proteins through Host-Enhanced Heterodimerization

bottom of page