top of page

Optically active CB[n] complexes

ADD

Mining 2:2 Complexes from 1:1 Stoichiometry

A 1:1 binding stoichiometry of a host–guest complex need not consist of a single host and guest. Diarylviologens containing electron-donating substituents complexed with cucurbit[8]uril (CB[8]) in a 1:1 stoichiometry exhibit abnormally large binding enthalpies compared to typical enthalpy changes observed for 1:1 binary complexes. Here, several CB[8]-mediated host–guest complexes, which were previously reported as 1:1 binary complexes, are verified to be 2:2 quaternary complexes by a combination of isothermal titration calorimetry, 1H, NOESY, and ROESY NMR, and ion mobility mass spectrometry, clearly indicating a binding motif of two partially overlapping diarylviologens held in place with two CB[8] molecules. Formation of 2:2 quaternary complexes is favored by electron-donating substituents, while electron-withdrawing substituents typically result in 1:1 binary complexes. The stacking of two highly conjugated diarylviologens in one quaternary motif affords the complexes enhanced conductance when considered as a single-molecular conductor. A 2:2 quaternary complex model grants a greater understanding of such supramolecular complexes, enabling the design of engineered, hierarchical structures and functional materials.

2-2-complexes.png

Modular supramolecular dimerization of optically tunable extended aryl viologens

Cucurbit[8]uril (CB[8]) mediated assembly of extended aryl viologens (EVs) into optically tunable dimers is reported for the first time. We show that the modular design and synthesis of a new class of π-conjugated viologen derivatives with rigid aromatic or heteroaromatic bridging units as well as electron donating molecular recognition motifs enable their self-assembly into 2:2 complexes with CB[8]. The quantitative dimerization process involving these two molecular components in an aqueous solution enables excimer-like interactions between closely packed charged guests giving rise to distinct spectroscopic behavior. The nature of these dimers (CB[8]2·(EV[X]R)2) in the ground and excited states was characterized by NMR, isothermal titration calorimetry, and steady-state spectroscopic measurements.

cb-2-2-clamping.png

Controlling the structure and photophysics of fluorophore dimers using multiple CB[8] clampings

A modular strategy has been employed to develop a new class of fluorescent molecules, which generates discrete, dimeric stacked fluorophores upon complexation with multiple cucurbit[8]uril macrocycles. The multiple constraints result in a “static” complex (remaining as a single entity for more than 30 ms) and facilitate fluorophore coupling in the ground state, showing a significant bathochromic shift in absorption and emission. This modular design is surprisingly applicable and flexible and has been validated through an investigation of nine different fluorophore cores ranging in size, shape, and geometric variation of their clamping modules. All fluorescent dimers evaluated can be photo-excited to atypical excimer-like states with elongated excited lifetimes (up to 37 ns) and substantially high quantum yields (up to 1). This strategy offers a straightforward preparation of discrete fluorophore dimers, providing promising model systems with explicitly stable dimeric structures and tunable photophysical features, which can be utilized to study various intermolecular processes.

bottom of page